此工藝的基本原理是將石灰石粉加水制成漿液作為吸收劑泵入吸收塔與煙氣充分接觸混合,煙氣中的與漿液中的碳酸鈣以及從塔下部鼓入的空氣進行氧化反應生成硫酸鈣,硫酸鈣達到一定飽和度后,結晶形成二水石膏。經吸收塔排出的石膏漿液經濃縮、脫水,使其含水量小于10%,然后用輸送機送至石膏貯倉堆放,脫硫后的煙氣經過除霧器除去霧滴,再經過換熱器加熱升溫后,由煙囪排入大氣。由于吸收塔內吸收劑漿液通過循環泵反復循環與煙氣接觸,吸收劑利用率很高,鈣硫比較低,脫硫效率可大于95% 。
工業上使用的非加氫脫硫方法有酸堿精制、溶劑萃取和吸附脫硫,而這幾種脫硫方法都存在著缺陷和不足。其中酸堿精制有大量的廢酸廢堿液產生,會造成嚴重的環境污染;溶劑萃取脫硫過程能耗大,油品收率低;吸附法中吸附劑的吸附量小,且需經常再生。其它的非加氫脫硫技術還處在試驗階段,其中生物脫硫、氧化脫硫和光及等離子體脫硫的應用前景十分誘人,可能是實現未來清潔燃料油生產的有效方法。由于降低燃料油中的硫含量、減少大氣污染是一個復雜的過程,因此實施時應考慮各種因素,提高技術的可靠性,以取得佳的經濟效益和環保效益。
(3)化學吸收的過程
化學吸收是由物理吸收過程和化學反應兩個過程組成的。在物理吸收過程中,被吸收的氣體在液相中進行溶解,當氣液達到相平衡時,被吸收氣體的平衡濃度,是物理吸收過程的極限。被吸收氣體中的活性組分進行化學反應,當化學反應達到平衡時,被吸收氣體的消耗量,是化學吸收過程的極限。這里用Ca(0H)2溶液吸收S02加以說明。 S02(氣體)
S02(液體)+Ca(0H)2→CaS03+H20
化學吸收過程中,被吸收氣體的氣液平衡關系,即應服從相平衡關系,又應服從化學平衡關系。
(4)化學吸收過程的速率及過程阻力
化學吸收過程的速率,是由物理吸收的氣液傳質速度和化學反應速度決定的?;瘜W吸收過程的阻力,也是由物理吸收氣液傳質的阻力和化學反應阻力決定的。
在物理吸收的氣液傳質過程中,被吸收氣體氣液兩相的吸收速率,主要取決于氣相中被吸收
組分的分壓,和吸收達到平衡時液相中被吸收組分的平衡分壓之差。此外,也和傳質系數有關,被吸收氣體氣液兩相間的傳質阻力,通常取決于通過氣膜和液膜分子擴散的阻力。
煙氣脫硫通常是在連續及瞬間內進行,發生的化學反應是極快反應快反應和中等速度的反
應,如Na0HNa2003和a(0H)2等堿液吸收S02。為此,被吸收氣休氣液相間的傳質陽力。